露出型柱脚における機械式定着の構造性能に関する実験的研究

市岡 大幸 Daiko Ichioka

概要

3 階建以下を対象とした重量鉄骨ラーメン構造において,外形 400mm 角のコンパクトな露出型柱脚を開発している。この露出形柱脚は,機械式定着を用いた基礎梁主筋としており,その定着耐力確認を目的とし, 基礎梁と鉄骨柱からなる L 形試験体の繰り返し載荷試験を行った。

結果として、以下の2点を明らかにすることができた。

①露出型柱脚での機械式定着について、靭性指針式(正加力 κ_u=0.6、負加力 κ_u=0.4)で概ね安全側に評価で きること。

②柱脚底 80mm 下方突出により, 横補強筋比 *Pwjh*=0.40~0.84%, せん断余裕度 λ*p*=0.69~0.87 の場合において, 梁および柱脚耐力を上回る耐力が期待できること。

Experimental Study on Structural Capacity of Mechanical Rebar Anchorage in Exposed Column Base

Abstract

We are developing a compact exposed column base with an outer diameter of 400 mm square for heavy steel rigid-frame structures of three stories or fewer. This exposed column base is the main reinforcement of the foundation beam using mechanical anchoring, and a repeated loading test was conducted on an L-shaped specimen consisting of a foundation beam and a steel frame column for the purpose of confirming the anchoring strength.

As a result, we were able to clarify the following two points.

- (1) Mechanical anchorage on exposed column bases can be evaluated on the safe side using the toughness guideline formula (positive applied force $\kappa u = 0.6$, negative applied force $\kappa u = 0.4$).
- (2)By protruding 80 mm downward from the bottom of the column base, when the ratio of lateral reinforcement is Pwjh = 0.40 to 0.84% and the shear margin is $\lambda p = 0.69$ to 0.87, a yield strength exceeding that of the beam and column base can be expected.

キーワード:露出型柱脚,機械式定着,基礎梁

-1 -

1. はじめに

3 階建以下を対象とした重量鉄骨ラーメン構造の 外形 400mm 角と比較的コンパクトな露出型柱脚に ついて,機械式定着を用いた基礎梁主筋の定着耐力 確認を目的とし,基礎梁と柱からなるL形試験体の 繰り返し載荷試験を行う。

露出型柱脚部の基礎梁主筋に機械式定着を適用 することは一般的に少ないが,小さい柱脚での納ま りと施工性に配慮し,採用した。構造上の特徴とし ては,鉄筋コンクリート造最上階を 180°反転した 形状と見なすことができる¹⁾。一般的な鉄筋コンク リート造(以下, RC 造と呼ぶ)の最上階L字部の梁 主筋の定着は,L形定着筋を用い,仕口部には上部 拘束筋としてかんざし筋を配置する²⁾。地震時にお いて,柱梁接合パネル部にはせん断力が作用するが, 図1に示すように基礎梁主筋による水平力,柱主筋 の鉛直力,そして,斜め方向の圧縮束によるコンク リートが負担する力が釣り合う必要がある。また, 柱梁のL 字が閉じる方向のときには梁上端主筋の 定着部と柱主筋は,重ね継手と同様の応力伝達がな され,鉄筋軸力が効果的に伝達される。

RC 造最上階において梁主筋を機械式定着とした ときには,梁上端主筋と柱主筋との効率的な応力伝 達は見込めず,パネルのせん断抵抗による斜め圧縮 束に対する拘束力は主筋 L 字定着時と比較して小 さくなり,定着耐力と変形能力は低下する。その対 策として,かんざし筋を梁主筋先端や梁仕口部付近 に配置することも一般的であるが,特に柱上部を突 出させ,柱主筋を外定着とすることで,斜張力に対 する柱主筋の拘束効果が大きくなり,耐力と変形能 力が改善できることが報告されている³⁾⁻⁶⁾。基礎梁 と露出型柱脚部においても,柱脚を下部突出として

図1最上階 RC 造柱梁接合部配筋例

- 2 -

アンカーボルトを梁下端筋よりも下で定着するこ とで、同様の効果が期待できると推察される。しか し、柱脚の下部突出は周りと段差が生じ、地業時の 掘削や転圧のしにくさなど、施工上の問題点が多い。 よって、下部突出量や定着部拘束筋は納まり上最小 限とする必要がある。本試験では、パラメータとし て、①梁せい 600mm、400mm、②下部突出の有無、 ③横補強筋比、④かんざし筋に相当する梁主筋先端 のJ形筋の有無、そして、⑤アンカーボルト先端の 定着板(アンカーPL)の有無の5つを設定した。

2. 実験概要

試験体は表1に示す1シリーズおよび2シリーズ の8種類各1体ずつである。試験体仕様を表2に示 す。柱は角形鋼管□150×150×12(16),そして,露出 型柱脚は外形 400×400mm で高さ 600mm とした。基 礎梁せいは2種類で,600mm せい(以降,H600と呼 ぶ)と400mm せい(以降, H400 と呼ぶ)である。H600 梁は 1,2 シリーズともに同じ断面で 600×280mm, 主筋 4-D19(SD345)2 段配筋である。H400 試験体は, 1 シリーズでは断面 400×400mm, 2 シリーズでは 400×280mm で、ともに主筋 3-D22(SD345)である。 図2に試験体配筋を示す。基梁主筋は柱脚仕口部で 同径の T ヘッド工法鉄筋と重ね継手で接合してい る。定着長さは315mm(D19:16.6d, D22:14.3d)で柱 脚アンカーボルトよりも奥に定着板を配置した。柱 脚アンカーボルトは異形鉄筋に転造ネジ加工を施 した。1 シリーズの梁せい H400 試験体のみ柱脚の 標準仕様のネジ径 M30(D32(SD390))で,その他試験 体は梁定着耐力を確認するため M36(D38(SD390)) とした。ネジ径 M36 の M30 との耐力比は 1.45 倍で ある。

表1試験体一覧

試験体		横補強筋	横補強筋比 Pjwh(%)	定着部 拘束筋	J形補強筋	アンカー PL	
	H600_0DN(1)	4-D13	0.79			無	
12.11. 7	H600_80DN(1)	(SD295)	0.72	2-D13	+		
129-2	H400_0DN(1)	2-D13	0.94	(SD295)	有		
	H400_80DN(1)	(SD295)	0.64				
	H600_0DN(2)	4-D10	0.40			有	
2シリーズ	H600_80DN(2)	(SD295)	0.40	2-D10	4115-	無	
	H400_0DN(2)	2-D10	0.48	(SD295)	***	有	
	H400_80DN(2)	(SD295)	0.40			無	

	-		11.122.1034						
試験		He	500	H400					
部位		1シリーズ	2シリーズ	1シリーズ	2シリーズ				
基礎梁									
	基礎せい	600)mm	400mm					
	基礎幅	280)mm	400mm	280mm				
	主筋	4-D19(2段酉	己筋) (SD345)	3-D22 (SD345)					
	あばら筋		D13(SD295)	150mm間隔					
	定着筋	Tヘッド D19(S	工法鉄筋 5D345)	Tヘッド工法鉄筋 D22(SD345)					
	定着長さ	315mm(0.78Dc)	(2本:315mm, 1本:300mm)					
柱脚									
	外形	400mm×400mm							
	縦方向筋	4-D13(SD295)							
	アンカーボルト	D38(SD390) M36		D32(SD390) M30	D38(SD390) M36				
	ベースプレート	PL36x300x300 (SN490B)							
柱									
	柱断面	□150x150x	16 (BSH325)	□150x150x	12 (BCR295)				

表 2 試験体仕様

柱脚縦筋は D13, 横補強筋は 1 シリーズ D13, 2 シリーズ D10 である。それぞれの横補強筋比は, 表 1 に示すように 1 シリーズは 0.72%と 0.84%, 2 シ リーズは 0.40%と 0.48%とである。柱脚部の縦筋 D13(SD295)と横補強筋は交差部をスポット溶接し た溶接鉄筋で, その溶接強度は鉄筋軸力が降伏応力 _{oy}以上となることを保証するため,縦筋の端部フッ クは設けていない。

柱脚下部突出寸法は 0mm と 80mm (以降, それぞ れ 0DN, 80DN と呼ぶ)の 2 種類で, 図 2 に示すよ うに 400mm 角の柱脚断面のまま 80mm 下方に柱脚 断面を伸長した。試験体は, 1 シリーズと 2 シリー ズそれぞれに, 梁断面 H600 と H400 の 0DN と 80DN を用意し,計 8 体である (表 2)。80DN 試験体のア ンカーボルトは 1 シリーズ 85mm, 2 シリーズ 80mm 伸長し, 微突出ながら外定着としている。

補強の仕様として、1シリーズ全ての試験体で下端 筋先端に D13 J 形筋(ステッキ筋)L=380mm を取付 けた。横補強筋の定着部拘束筋は、0DN 試験体は最 下部を2本束ねとし、80DN 試験体は2本を80mm 間隔で配置した。図2に示すように2シリーズでは 0DN 試験体の補強として、梁に近い2本のアンカー ボルトの定着板上面に、補強プレート(以降,アン カーPL と呼ぶ)を取り付けた。これはL型試験体が 開く側の負載荷時に、圧縮束による力をアンカーボ ルトが効果的に負担できるようにする目的のもの である。基礎梁で下から挿すかんざし筋の施工が難 しいため、補強方法の一つとして試みた。

試験方法は図3に示す通り、L字試験体を90°傾けてセットし、柱頭は3方向クレビスを介して水平ジ

図 2 試験体配筋

表3 コンクリートの機械的性質

		コンク	リート	ベースモルタル			
試験(本	圧縮強度	引張強度	圧縮強度	引張強度		
		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)		
1シリーズ	H600	20.6	0.0	50.9	2.6		
	H400	29.0	2.3	52.4	2.2		
2シリーズ	H600	20 0	26	66.1	2.7		
	H400	20.0	2.0	70	2.6		

ャッキと鉛直ジャッキで支持し,梁端をクレビスで ピン固定とした。載荷は柱頭の水平ジャッキの押し 側を正加力として正負交番繰り返し載荷を行った。 本試験は柱脚部の定着耐力の確認であるため,柱脚 底部で反力を受けることを嫌い,このような載荷方 法をとった。制御は2シリーズでは柱頭と梁端のク レビスを結ぶ斜め変位から層間変形角 R を算出し, 層間変形角 R=5,10,20,30,40(×10⁻³rad)を2サイクルず つ繰り返した。1シリーズは柱脚回転角で制御した が,梁側の変形もあり制御がうまくいかなかったた め,層間変形角の包絡線で,2シリーズの結果と合 せて示す。

表3 にコンクリートの機械的性質を示し,表4 に鉄筋および鋼材の機械的性質を示す。

図 3 試験方法

表4 鉄筋および鋼材の機械的性質

試験体 シリーズ	部位	試験体	材料	降伏点 σy N/mm ²	引張強さ σu N/mm ²	仕様	
		H600(1)	D38 (SD390)	433	619	M36 転造	
	アンガーホルト	H400(1)	D32 (SD390)	444	624	M30 転造	
	Tヘッド工法鉄筋	H600(1)	D19(SD345)	392	589	-	
1	(梁主筋)	H400(1)	D22(SD345)	370	571	-	
シリーズ	柱脚部横補強筋 柱脚部縦筋	共通	D13(SD295)	352	496	溶接鉄筋 (全強)	
	柱口150 ² ×12	H400シリーズ	BCR295	439	474	-	
	柱口150 ² ×16	H600シリーズ	BSH325	-	-		
	ベースプレート	共通	SN490B	405	534	$PL36\!\times\!300^2$	
	アンカーボルト	共通	D38 (SD390)	433	619	M36 転造	
	Tヘッド工法鉄筋	H600(2)	D19(SD345)	373	566	-	
2 シリーズ	(梁主筋)	H400(2)	D22(SD345)	387	580	-	
	柱脚部横補強筋	共通	D10(SD295)	367	512	溶接鉄筋 (全強)	
	柱脚部縦筋	共通	D13(SD295)	350	487	-	
	柱口150 ² ×12	H400(2)	BCR295	406	497	-	
	柱口150 ² ×16	H600(2)	BSH325	374	544	-	
	ベースプレート	共通	SN490B	367	516	$PL32\!\times\!300^2$	

3. 実験結果

表5に試験結果一覧,図4にせん断力-層間変形 角関係(*Qc-R*関係)をそれぞれ示し,最終破壊状況 を写真1,2に示す。

破壊形式は表5に示すように,H600 試験体では, 概ね柱脚アンカーボルト降伏後に最外縁梁主筋の 降伏が確認され,最終的にせん断破壊で荷重低下に 至った。ただし,2段筋内側の主筋は降伏に至らな かった。試験体H600_0DN(1)はH600 試験体で唯一 主筋降伏に至っていない。試験体H600(2)の2体は, アンカーボルトと梁主筋の降伏がほぼ同時に起こ り,正加力 0.04rad 以降にせん断ひび割れが大きく

図4 せん断カー層間変形角関係(Qc-R 関係)

表5 試験結果一覧

			(社営店	(計約 宇政	(中))		(字段)(古)		1		目上云上山		
試験体		せん断余裕度 <i>入 p=</i> <i>Qpu/Qcu</i>	Qcu ※1 (kN)	柱脚耐力 cQcu※2 (kN)	_反)) 梁耐力 cQgu※3 (kN)	パネル 耐力 <i>Qpu</i> ※4 (kN)	(実験値) 柱せん断力 eQmax(kN)	eQmax /Qcu	eQmax比 (80DN /0DN)	eQmax /Qcu	取入前方比 (2シリーズ /1シリーズ)	最大層間 変形角 <i>R so</i> (rad)	破壊モード ※3
H600_0DN(1)	正加力	1.16	98.4	98.4	105.8	113.9	91.2	0.93	/	0.93	Ν	(計測不	CY→PU
11000_0D1.(1)	負加力	0.92	-82.5	-86.3	-82.5	-75.9	-87.3	1.06		1.06		良)	01 10
H600 80DN(1)	正加力	1.23	98.4	98.4	105.8	121.5	103.9	1.06	1.14	1.06		0.05	$CY \rightarrow BY \rightarrow$
1000_00D1((1)	負加力	0.98	-82.5	-86.3	-82.5	-81.0	-88.7	1.08	1.02	1.08		-0.06	PU
H400_0DN(1)	正加力	1.33	56.9	79.4	56.9	76.0	67.7	1.19	\sim	1.19		/	
	負加力	1.02	-49.5	-69.0	-49.5	-50.7	-58.8	1.19		1.19		-0.07	BY→CY→
H400 80DN(1)	正加力	1.41	56.9	79.4	56.9	80.4	72.6	1.27	1.07	1.27			PU
11400_80DIN(1)	負加力	1.08	-49.5	-69.0	-49.5	-53.6	-66.7	1.35	1.13	1.35		-0.05	
4600 0DN(2)	正加力	1.20	96.5	96.5	104.3	115.3	93.4	0.97	\sim	0.97	1.02	0.04	
11000_0D14(2)	負加力	0.94	-81.4	-84.7	-81.4	-76.9	-82.7	1.02		1.02	0.95	-0.04	CY→BY
H600 80DN(2)	正加力	1.20	96.5	96.5	104.3	115.3	101.8	1.05	1.09	1.05	0.98	0.04	→PU
11000_80D14(2)	負加力	0.94	-81.4	-84.7	-81.4	-76.9	-90.3	1.11	1.09	1.11	1.02	-0.05	
H400 0DN(2)	正加力	1.12	58.0	103.1	58.0	64.9	57.7	1.00	\sim	1.00	0.85	0.03	
11400_0DIN(2)	負加力	0.87	-49.6	-89.8	-49.6	-43.3	-48.9	0.99		0.99	0.83	-0.03	
1400 80DN(2)	正加力	1.12	58.0	103.1	58.0	64.9	77.8	1.34	1.35	1.34	1.07	0.04	DI-FU
H400_80DN(2)	負加力	0.87	-49.6	-89.8	-49.6	-43.3	-63.6	1.28	1.30	1.28	0.95	-0.04	
$ \begin{array}{ c c c c c c } \hline & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $													
※3 $M_u = 0.9 \cdot d \cdot A \cdot \sigma_y$ 文献3ではdtgli鉄筋重心問距離であるが、基礎架はかぶりが大きく ($\phi = 0.85$, bj=340mm(梁280幅), Dj=梁318mm, Ablt532mm(0DN), 612mm(80DN)) 値が距離するため0.9d+1 た.													
※4 Q _{pu} = min{Q _{puh} , Q _{puv} } ※5 CY: 柱脚アンカーボルト降伏, BY: 基礎梁主筋降伏, PU: 接合部せん断破壊													

- 4 —

開き,耐力低下に至った。H400 試験体では梁主筋 降伏後,柱脚 M30 アンカーボルト(1 シリーズ)は降 伏し, M36 アンカーボルト(2 シリーズ)は弾性で あっ

た。最終的にパネルせん断破壊により,荷重低下に 至った。試験体2シリーズのH400試験体2体は正 加力時の斜めひび割れが大きく開き,耐力低下に至 った。また,負載荷時には,柱脚と梁の圧縮側を繋 ぐような円弧状のひび割れが卓越した。

表5に示すように,最大耐力 eQmax については, 0DN 試験体で柱脚と梁終局耐力の下限値 Qcuを下回 る傾向にあり、80DN 試験体についてはすべて Qcu を上回った。80mmDN 試験体と 0DN 試験体の最大 せん断耐力 eQmax の比率 (eQmax 比=80DN/0DN)を比 較すると、1シリーズでは1.02~1.14、2シリーズで は1.09~1.35 と耐力は大きくなっており,80mmDN の下方突出による効果が確認された。ただし, H400 80DN(2)の耐力が1シリーズと比べて約3割 大きいことについては, 試験体 H400 0DN(2)の最大 耐力が試験体 H400_0DN(1)と比べて正負加力時に それぞれ15%,17%低下していることによる。これ は、2シリーズでは横補強筋比が1シリーズよりも 小さく、J形筋もないためである。一方で試験体 H400_80DN(2)は H400_80DN(1)と比べて正負載荷 で1.07, 0.95 とほぼ同等であったことから、横補強 筋比の影響は 80mmDN の効果により補われている。 H400 0DN(2)に取付けたアンカーPL の明確な効果 は確認できなかった。

図5に $_{eQmax}/Q_{cu}$ とせん断余裕度 λ_{p} の関係を示す。 文献3では j_{lg} を主筋重心間距離としているが,本試 験体は基礎梁を対象としておりかぶり厚が大きい ため、 j_{lg} を主筋重心間距離とすると Q_{cu} を過小評価 してしまうため、ここでは j_{lg} を 0.9d とした。図5よ り、靭性指針式に文献3の接合部係数(正加力 κ_{u} =0.6、 負加力 κ_{u} =0.4)を適用し、概ね安全側に評価できて いる。

以上より, 柱脚を 80mm 下方突出とすることで, Q_{cu} 以上の定着耐力が確保されることが確認できた。

(c)H400_0DN(2)(d)H400_80DN(2)写真 2 最終破壊状況 (2 シリーズ)

変形能力について, 表 5 に最大耐力の 80%低下時 変形角 R_{80} を示す。また、図 6 に耐力が $_{e}Q_{max}$ の 8 割 に下がったときの限界層間変形角 R_{80} とせん断余裕 度 λ_{p} との関係 (R_{80} - λ_{p} 関係)を示し、図 7 に R_{80} と横 補強筋比 P_{wyh} (R_{80} - P_{wyh} 関係) との関係を示す。試験に おいては、正加力時に荷重低下に至らず、負加力時 に破壊している試験体もあることから、負加力時に 着目する。表 5 より、1 シリーズ、2 シリーズそれ ぞれの 0DN 試験体と 80DN 試験体を比較すると、 80DN 試験体が 1 サイクル程度変形能力が大きい傾 向にある。一方で、図 7 においては R_{80} とせん断余 裕度 λ_{p} との間には明確な相関はみられなかった。 R_{80} と横補強筋比 P_{wyh} との関係については、負加力 時に横補強筋比に比例して R_{80} が大きくなる傾向が 見られ, H400 試験体の 2 シリーズと 1 シリーズの 平均値で比較すると,-0.035rad から-0.059rad ~ 1.67 倍に改善した。

4. まとめ

- (1) 露出型柱脚での機械式定着についても、靭性指 針式(正加力 κ_u=0.6、負加力 κ_u=0.4)で, 概ね安 全側に評価できる。
- (2) 柱脚底 80mm 下方突出により,横補強筋比 P_{wijh}=0.40~ 0.84%,せん断余裕度 λ_p=0.78~1.41 の場合において,梁および柱脚耐力を上回る耐 力が期待できる。

図7 R₈₀一横補強筋比 Pwjh 関係

今後の課題として,施工性の観点から柱脚底を突 出させない工法に改善していきたい。

謝 辞

本研究にあたり, 柱脚の開発について神戸大学 大谷先生および研究室の方々には多大なるご協力 をいただいた。ここに記して謝意を表する。

参考文献

- 1) 鉄筋コンクリート構造計算規準・同解説 2018
- 鉄筋コンクリート造建物の靱性保証型耐震設計指針・
 同解説 日本建築学会, 1999
- 益尾 潔,井上寿也,岡村信也:機械式定着工法による RC 造 T 形および L 形柱梁接合部の終局耐力に関する 設計条件,日本建築学会構造系論文集 590 号, pp. 95-102, 2005 年 4 月
- 4) 益尾 潔,堂下 航,足立 将人,田川 浩之:機械式柱主 筋外定着方式による最上階 RC 造 L 形接合部の構造性 能,日本建築学会構造系論文集 697 号,pp. 411-418, 2014 年 3 月
- 5) 田川 浩之,堂下 航,足立 将人 他:機械式柱主筋・外定 着による RC 造最上階 T 形,L 形柱梁接合部の実験, GBRC vol.36, No.1, pp.32-39, 2011.1
- 益尾 潔, 足立 将人:機械式定着による柱主筋定着耐力 ならびに T 形,L 形部分架構の変形性能,コンクリート 工学年次論文集, pp.343-348, vol.36, No.2, 2009

執筆者紹介

skye3 はまだ発展途上だと考 えているので、特に現場が楽 になるような改善改良に努め ていきたい。

市岡 大幸 博士 (工学)